FRONT MATER. 2022; 9, DOI:10.3389/fmats.2022.932157

Applications of Nonviral Biomaterials for microRNA Transfection in Bone Tissue Engineering

Zhu, MY; Gu, YZ; Bian, C; Xie, XJ; Bai, YX; Zhang, N

Abstract

Bone tissue engineering, which involves scaffolds, growth factors, and cells, has been of great interest to treat bone defects in recent years. MicroRNAs (miRNAs or miRs) are small, single-stranded, noncoding RNAs that closely monitor and regulate the signaling pathway of osteoblast differentiation. Thus, the role of miRNAs in bone tissue engineering has attracted much attention. However, there are some problems when miRNAs are directly applied in the human body, including negative charge rejection of the cell membrane, nuclease degradation, immunotoxicity, and neurotoxicity. Therefore, it is necessary to use a suitable carrier to transfect miRNAs into cells. In contrast to viral vectors, nonviral vectors are advantageous because they are less immunogenic and toxic; they can deliver miRNAs with a higher molecular weight; and they are easier to construct and modify. This article reviews the application of different miRNAs or anti-miRNAs in bone tissue engineering and the related signaling pathways when they promote osteogenic gene expression and osteogenic differentiation of target cells. An overview of the properties of different types of nonviral miRNA-transfected biomaterials, including calcium phosphates, nanosystems, liposomes, nucleic acids, silk-based biomaterials, cell-penetrating peptides, bioactive glass, PEI, and exosomes, is also provided. In addition, the evaluations in load efficiency, release efficiency, cell uptake rate, biocompatibility, stability, and biological immunity of nonviral miRNA-transfected biomaterials are given. This article also confirms that these biomaterials stably deliver miRNA to promote osteogenic gene expression, osteogenic differentiation of target cells, and mineralization of the extracellular matrix. Because there are differences in the properties of various nonviral materials, future work will focus on identifying suitable transfection materials and improving the transfection efficiency and biocompatibility of materials.

Keywords: bone tissue engineering; microRNA; calcium phosphates; nanoparticles; transfection; nonviral vectors; osteogenesis

Related products/services

Cell-Penetrating Peptides

Cell-penetrating peptides are special protein sequences that enable biomolecules to cross cell membranes. These peptide fragments have sufficient affinity to interact with cell membranes and help other molecules or drugs enter the cell. Cell-penetrating peptides have a wide range of applications, including gene delivery, drug delivery, and bioimaging. Through structural design and improvement, scientists can regulate the specificity and efficiency of cell-penetrating peptides to achieve more precise intracellular delivery. This technology provides a powerful tool for biomedical research and treatment, is expected to improve the effectiveness of drug delivery, and promote the development of biology and medicine.

Product Name Catalog Unit Size Price
11R-VIVIT TFA CDCCP23-029L 1 mg, 5 mg, 10 mg, 50 mg, 100 mg INQUIRY
(Arg)9 Acetate CDCCP23-046L 1 mg, 5 mg, 10 mg, 50 mg, 100 mg INQUIRY
Arg-Gly-Asp-Ser TFA CDCCP23-148L 50 mg, 100 mg, 250 mg INQUIRY
Contact Us

    USA

    UK

Fill out the form below
to receive a quote

GET A QUOTE

  • (USA)
  • (Europe)
Cookie Policy | Privacy Policy | Copyright © 2024 CD Bioparticles. All rights reserved.
0
Inquiry Basket
Inquiry