-
Nanocarrier System Targeting Stromal Organelles
With the development of biomedicine, some diseases are clinically found to be caused by organelle lesions. And the drugs used to treat these diseases not only need to cross the cell membrane to enter the cell, but also need to target specific organelles to play a role. Therefore, in the development of drugs for these diseases, suitable carriers are needed to help the drugs target the target organelles. With the development of nanotechnology, researchers have found that nanosystems have obvious advantages in the field of organelle targeting. Therefore, more and more nanoparticles are used to target the endoplasmic reticulum, lysosomes and mitochondria. Mitochondrial Targeting Mitochondria play a very important role…
-
Application Prospects of Targeted Nano Drug Delivery System
Targeted drugs were proposed by German scientist and Nobel Prize winner Ehrlich in 1906 and have a history of more than 100 years. Until the late 1970s, with the advancement of molecular biology, cell biology, and materials science, targeted formulations developed rapidly, and products began to be marketed. The nano drug delivery system is distributed in specific organs, tissues, cells, and even intracellular structures in the body through passive targeting, active targeting, physical and chemical targeting, etc., and changes the distribution of prototype drugs in vivo. With the leapfrog development of life sciences, human understanding of disease pathogenesis and drug action mechanisms has transitioned from a macroscopic overall level to…
-
Nuclear Targeted Nano Drug Carrier
The nucleus is the place where the genetic material in the cell is stored, copied and transcribed, and plays an important role in the metabolism, growth and differentiation of the cell. Therefore, the nucleus is also the site of action for various drugs such as DNA, intercalators, alkylating agents, and topoisomerase inhibitors. The nuclear membrane is composed of two layers of membranes on which nuclear pore complexes (NPCS) exist. The nuclear membrane will disappear only when the cell undergoes mitosis. In other cases, the only way for large molecules to enter the nucleus is the nuclear pore complex, which allows particles with a diameter of 9 nm or molecules with a…
-
Cytoplasm Targeted Nano Drug Carrier
The cytoplasm is the general term for all translucent, colloidal, granular materials except the nuclear area surrounded by the cytoplasmic membrane, and is composed of the cytoplasmic matrix, endomembrane system, cytoskeleton, and inclusions. Among them, the cytoplasmic matrix, also known as cytosol, is a homogeneous and translucent colloid in the cytoplasm, which is filled between other tangible structures; its main function is to provide an ionic environment for various organelles to maintain their normal structure and supply all substrates for various organelles to complete functional activities, and is also the venue for certain biochemical activities. The importance of cytoplasmic matrix transport is not only due to the existence of multiple drug targets in the matrix…
-
Colon-Targeted Nanoparticles
The colon is located between the cecum and rectum and is divided into four parts: the ascending colon, the transverse colon, the descending colon, and the sigmoid colon. Its main function is to absorb water and electrolytes and solidify the contents into feces. The colon cannot actively absorb substances such as sugar, amino acids, and small molecule peptides. Its absorption function is mainly achieved by the content of the colon staying for a long time. Some drugs can be absorbed by passive diffusion. The physiological environment of the colon has the following characteristics: ① The pH is generally 6.5 to 7.5, which varies depending on the diet structure and physiological…
-
Eye Targeted Nano Drug Delivery System
The eye is divided into anterior and posterior segments. The anterior segment includes the cornea, conjunctiva, iris, aqueous humor, and ciliary body. The posterior segment includes the vitreous, retina, choroid, and sclera. The physiological barriers of the eye include the corneal and conjunctival barriers, the aqueous humoral barrier, and the blood-retinal barrier. The cornea and retina are barriers that are not easily penetrated by drugs. The drug absorption of eye drops usually has a corneal route and a non-corneal route. Fat-soluble drugs enter the aqueous humor from tears mainly through the corneal pathway. In the non-corneal pathway, the drug penetrates into the human eye tissue through the conjunctiva and sclera,…
-
Kidney-targeted Nanoparticles
Common kidney diseases include pathological changes in primary and secondary glomeruli, renal tubules, renal mediators, and renal blood vessels. In the clinical treatment of kidney disease, hormone shock treatment is often used, supplemented by triptolide tablets and other drugs for maintenance treatment. The toxic and side effects of large doses of hormones and maintenance drugs severely limit the continuous treatment of kidney disease. When kidney disease develops to a later stage, chronic renal failure will occur, and patients have to rely on expensive hemodialysis or kidney transplantation to prolong life, which will bring a heavy burden on patients’ families and society. It is of great significance to research and develop…
-
Bone-targeting Nano-drug Delivery System
Bone is an important part of the human body and is composed of periosteum, bone and bone marrow. Normal bones are always in the dynamic equilibrium of bone formation and bone resorption in bone reconstruction, and they coordinate with each other to maintain the physiological functions of bones. If the pathological change occurs during normal bone reconstruction, various bone diseases such as osteoporosis, deformity osteitis, bone metastases, primary and secondary bone tumors, and osteoarthritis will occur. Due to the high hardness, poor permeability, and special physiological and biochemical processes of the bone tissue, it is difficult for the general route of administration to transport the drug to the lesion site.…
-
The Mystery Of Cationic Nanocarrier Toxicity
With the application of nanotechnology in the field of medicine, lipid- or polymer-based nanocarriers are becoming the mainstream for delivering small-molecule drugs and large molecules, which has increased the effectiveness of drugs and simplified their administration. Nano-scale carriers not only The advantages of nanomaterials, as well as novel properties and functions, such as the ability to interact with complex cell functions in new ways, can create new biomedical applications. In addition, by designing physicochemical properties or surface modification, nanocarriers have multiple potentials for targeted drug delivery to specific sites. Among them, surface charge is one of the important characteristics of nanoparticles. Positively-charged nanocarriers formed from cationic lipids or polymers are most commonly used in…
-
Nanoparticles Vector Can Screens Release Peptides For Efficient Gene Delivery
For many years, gene therapy has attracted the attention of scientists all over the world due to its nature of fundamentally treating diseases, in order to overcome genetic diseases such as cancer, diabetes, and multiple sclerosis. However, nucleic acid-based drugs, including transgene-containing plasmids, SiRNAs, antisense oligonucleotides, aptamers, and ribozymes, have not achieved the expected results in clinical trials. The reason is that some extracellular and intracellular barriers hinder the bioavailability of these drugs at their site of action. Therefore, a delivery system that can overcome these obstacles is necessary. Over the past few decades, scientists have developed viral and non-viral vectors to deliver genetic drugs into cells of the body.…